

EX-FEVER: A Dataset for Multi-hop Explainable Fact Verification

Huanhuan Ma, Weizhi Xu, Yifan Wei, Liuji Chen, Liang Wang, Qiang Liu, Shu Wu, Liang Wang

Fact Verification

- In the era of mobile internet, the proliferation of misleading or fake information has raised great concern in human society.
- Fact verification, also known as fact-checking, is the task of determining the veracity of claims by finding supporting evidence.
- It plays a crucial role in combating misinformation and maintaining the integrity of public discourse.
- Current research on automatic fact verification, using deep learning methods, focuses only on accuracy improvement while neglecting explainability, a crucial ability of an automatic fact verification system.

EX-FEVER Dataset Overview

Datasets	Hops	Explainable	Class	Claim	John Mayer is an American singer-songwriter whose debut EP was later re-released by an American record label owned by Sony Music
HOVER FEVER e-FEVER EX-FEVER	2-3-4 1-2 1-2 2-3	X X √	2 3 3 3	Golden Explanation	Entertainment. John Mayer is an American singer-songwriter who released his first extended play, Inside Wants Out. Inside Wants Out is the debut EP by John Mayer that was later re-released by Columbia Records. Columbia Records is an American record label owned by Sony Music Entertainment.
Table 1: I	Table 1: Related Datasets Comparison			Golden Document	John Mayer, Inside Wants Out, Columbia Records Label SUPPORT

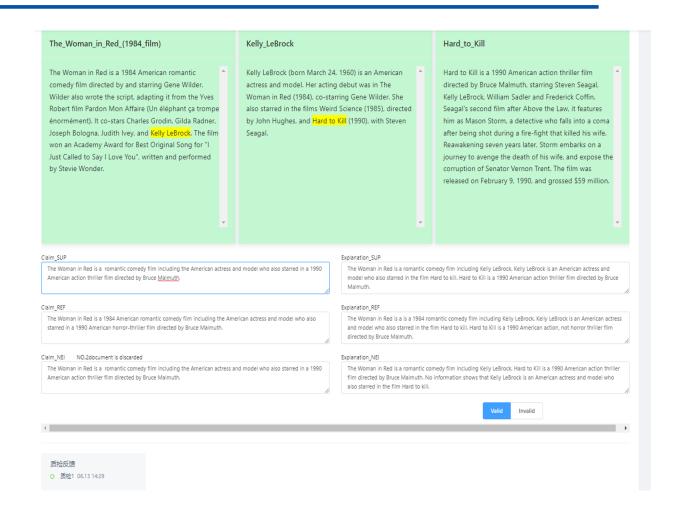
Key features: 60,000+ complex multi-hop claims

Dataset composition:

- Verification labels (SUPPORTS, REFUTES, NOT ENOUGH INFO)
- Explanatory annotations

Dataset construction

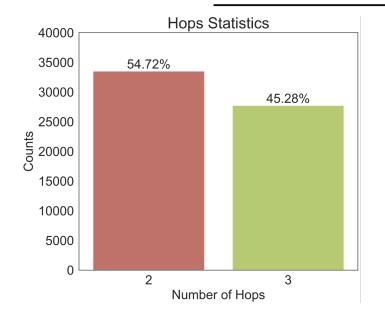
- We use Top 50,000 popular Wikipedia pages and Create multi-hop reasoning paths using hyperlinks.
- We hired annotators, trained them with detailed guidelines
- We reviewed and refined their work through quality inspections. In total, we collected 60,000 annotated claims, each with a verdict and explanation

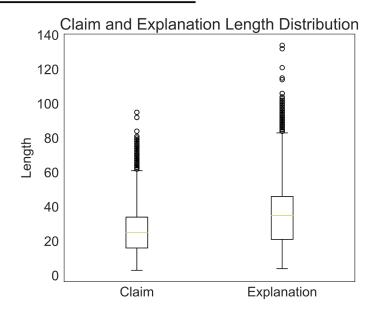


Dataset Characteristics

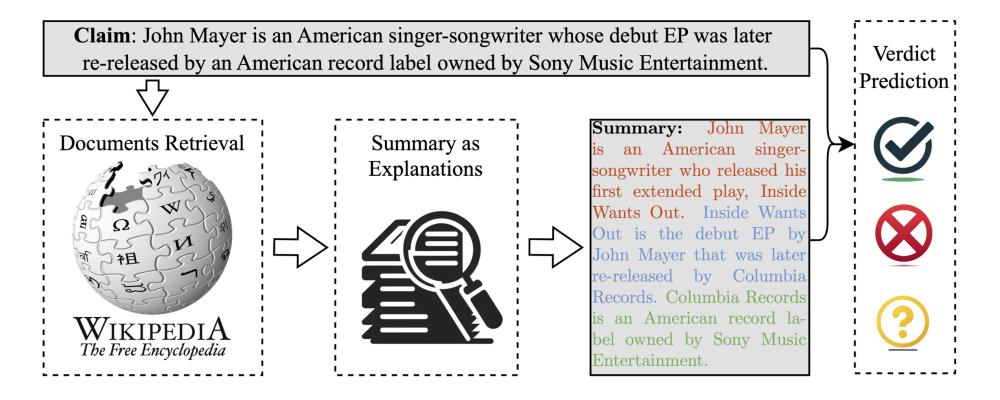
Table1: Data Statistics with different number of hops and different label classes. The average claim length and explanation length in word level are reported.

Hops	SUP	REF	NEI	Claim	EXP
2 Hops	11053	11059	11412	21.63	28.39
3 Hops	9337	9463	8941	30.69	43.45
Total	20390	20522	20353	25.73	35.21





Benchmark System Architecture



The baseline system comprises three stages: document retrieval, summary generation as explanations, and verdict prediction. The system produces two main outputs: a veracity label and a summary that serves as an explanation for the prediction.

Experimental Setup

Model selection

Document Retrieval

- Rule-based: TF-IDF
- Neural-based:
 - BERT-based model
 - MDR model

Explanatory Stage

BART Fine-tuned on dataset's training split

Verdict Prediction

- BERT
- GEAR graph-based text reasoning model

Evaluation Metrics

Document Retrieval

- Exact match score (EM)
- Recall@k

Explanation Generation

ROUGE score

Verification

- Accuracy
- F1 score

Results & Analysis

Table2: Retrieve Model Performance Comparison

Model	EM	Hit@6	Hit@12	Hit@30
MDR	43.3	55.00	60.90	68.60
BERT-based	32.4	66.12	70.28	73.98

Table3: Generated Summary Metrics Comparison

Model	Length	rouge1	rouge2	rougeL	rougeLsum
MDR	54.79	54.88	41.34	49.42	53.02
BERT-based	46.05	46.88	32.80	35.52	44.41
Explanation from ChatGPT					
GPT-0example	58.05	52.28	33.74	48.13	49.89
GPT-3example	48.56	59.98	42.85	57.66	55.61

Table4: Verify Model Comparison. The accuracy (%) of each model is reported

Model	Val	Test	Test On Golden	Train With Golden
Gear@BERT-based	54.96	54.71	53.08	61.05
Gear@MDR	59.68	58.89	53.98	-
BERT@BERT-based	68.07	67.65	76.69	99.29
BERT@MDR	73.86	73.34	76.89	-
HOVER@MDR	46.58	45.41	33.79	-

Overall Conclusions

- Retrieval model quality significantly impacts system performance
- EM score is crucial due to text generation model constraints
- 3. Current graph-based methods may lack true reasoning capabilities
- 4. High-quality explanations are vital for accurate verdict prediction

Large Language Model Exploration

LLMs as actors: direct fact-checking

LLMs as planners: decomposing complex claims

Table4: Use LLM as an actor or a planner. The accuracy (\%) of each model is reported.

Type	Model	Close	Open	Gold
	ClaimOnly	45.78	-	-
	w/o exp	-	-	47.91
Actor	w/ exp	-	-	47.92
	1 shot	-	-	47.91
	3 shots	-	-	58.69
Planner	ProgramFc	47.30	51.70	64.90

Findings:

Despite extensive training data, LLMs require additional knowledge to perform well on this task. Incorporating few-shot examples proves effective. Large models excel in generating guides to assist other models in making judgments, rather than making predictions directly.

Conclusion

- Dataset Introduction: We present a publicly accessible fact-checking dataset, EX-FEVER, with over 60,000 multi-hop claims and detailed annotations for understanding veracity assessments.
- System Design: Our comprehensive system includes retrieval, summarization for explanation, and verification stages, highlighting the dataset's significance.
- **LLM Investigations:** Preliminary studies with the GPT-3.5-turbo model show that using LLMs as planners yields better performance than as actors, particularly in generating explanations.
- Improvement Potential: Despite the capabilities of LLMs, there is substantial room for enhancement in the fact-checking process.
- Benchmarking Value: EX-FEVER serves as a crucial benchmark for advancing explainable multihop fact-checking, aiding in reliability and informed decision-making across various fields.

Thanks