
Multi-Cause Learning for Diagnosis Prediction

Liping Wang1,2[0000−0002−3824−0806], Qiang Liu1,2[0000−0002−9233−3827],
Huanhuan Ma1,2[0000−0002−7151−9550], Shu Wu1,2[0000−0003−2164−3577], and

Liang Wang1,2[0000−0001−5224−8647]

1 Center for Research on Intelligent Perception and Computing, Institute of
Automation, Chinese Academy of Sciences

wangliping2019@ia.ac.cn,qiang.liu@nlpr.ia.ac.cn,
huanhuan.ma@cripac.ia.ac.cn,{shu.wu, wangliang}@nlpr.ia.ac.cn

2 School of Artificial Intelligence, University of Chinese Academy of Sciences

Abstract. Recently, Electronic Health Records (EHR) have become
valuable for enhancing diagnosis prediction. Despite the effectiveness of
existing deep learning based methods, one unified embedding fails to cap-
ture multiple disease causes of a patient. Even though naive adoption of
multi-head attention could produce multiple cause vectors, a strong cor-
relation between these cause representations might mislead the model to
learning statistical spurious dependencies between cause vectors and di-
agnosis predictions. Hence, in this work, we propose a novel Multi-Cause
Learning framework for Diagnosis Prediction, named MulDiag. Our
Multi-Cause Network extracts multiple cause representations for a pa-
tient. We introduce HSIC (Hilbert-Schmidt Independence Criterion) to
measure the dependencies among each pair of cause representations. Fur-
ther, sample re-weighting techniques are utilized to conduct cause decor-
relation. Experimental results on a publicly available dataset demon-
strate the effectiveness of our method.

Keywords: Diagnosis prediction · Multi-cause · Decorrelation · Statis-
tical dependency.

1 Introduction

Recently, Electronic Health Records (EHR) have become valuable for enhancing
medical decision making. EHR data are represented as a temporal sequence of
visits, where each visit includes multiple medical codes, representing clinical
diagnoses. One critical task is to predict future diagnoses based on historical
EHR data of a patient, so as to intervene in advance, i.e., diagnosis prediction.

Meanwhile, deep learning models have achieved great success in various do-
mains [7, 8, 20]. A lot of deep learning based methods have also been proposed
to model sequential EHR data. Similar to word embedding [17], each diagno-
sis is parameterized by a real-valued vector. Recurrent neural networks [8] are
adopted to model temporal correlation among EHR sequence data. With a pa-
tient’s historical EHR data, these deep learning based methods usually generate
an overall embedding as patient health status representation.
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Despite the effectiveness of these deep learning based approaches, there re-
main some challenges demanding further exploration. A primary challenge is
that it is hard for a unified embedding to reflect different aspects of disease pro-
gression. Take an old man as an instance, he may suffer from multiple diseases:
diabetes and heart disease. Diagnoses of these two kinds of diseases appear dur-
ing the historical EHR data. Information of different diseases is fused in the uni-
fied patient representation which produces difficulties for accurate predictions.
Hence, we propose a multi-cause network to capture multiple disease causes of
a patient.
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Fig. 1: Since the training dataset is collected in flu season, typical diagnoses of
respiratory (fever, sore throat) and heart disease (chest pain) tend to appear at
the same time. Hence, it is possible for the model to learn a spurious dependency
between sore throat and heart failure. Then, in the test phase, the model may
make predictions of heart failure according to sore throat symptoms.

Some existing methods [2] attempt to adopt multi-head attention mechanisms
to capture different aspects of disease progression. However, the performance im-
provement is limited for two reasons. First of all, without proper regularization,
it is hard to obtain a model which can produce diverse cause vectors. Instead,
the obtained cause representations will be highly correlated which limits the ca-
pability of those methods. Further, the strong statistical correlation may mislead
models to learn a statistical spurious dependency between diagnosis prediction
and disease cause representation. As a result, when data distribution shifts,
the learned statistical spurious dependency may generate false predictions. For
instance, as illustrated in Figure 1, during flu season, typical symptoms of res-
piratory (for example, cold) and heart disease tend to co-appear in some old
patients. If a model which attempts to capture multiple disease causes is trained
on these data, diagnoses of respiratory (sore throat) and heart disease (heart fail-
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ure) would be statistically correlated. This kind of spurious dependency would
result in false predictions of heart failure if symptom sore throat appears in
historical visits.

To tackle the above two challenges, we propose a novelMulti-Cause Learning
framework for Diagnosis Prediction, named MulDiag. With regard to the first
challenge, we propose to represent one patient with multiple vectors through
a multi-cause network. As for the second challenge, we introduce the Hilbert-
Schmidt Independence Criterion (HSIC) to measure the degree of independence
among captured disease causes. Inspired by sample re-weighting techniques [10,
25], the cause correlation regularizer aims to estimate a sample weight for each
sample such that captured causes are decorrelated on the reweighted training
data. These two modules are jointly optimized in our method.

The main contributions of this work are summarized as follows:

– We propose a multi-cause network to capture different causes of a patient.
– We introduce the Hilbert-Schmidt Independence Criterion (HSIC) to mea-

sure dependencies among captured causes.
– We adopt re-weighting techniques to conduct cause decorrelation for diag-

nosis prediction.

2 Related Work

2.1 Diagnosis Prediction

EHR data contain rich historical health information of patients. Building power-
ful health risk prediction models based on EHR data paves the way for personal-
ized health care applications. Recently, deep learning techniques, including Con-
volutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),
have achieved great success in various applications among multiple domains,
including health risk prediction and diagnosis prediction based on EHR data.
In viewing that EHR data exist in temporal sequential form, it is natural to
adopt RNNs or LSTMs to model disease progression in the time dimension. In
comparison, CNNs are adopted to capture local dependence in EHR data.

In Dipole [14], bidirectional recurrent neural networks are employed to re-
member all the information of both the past visits and the future visits, and
three attention mechanisms are introduced to measure the influence of different
visits for the prediction. RETAIN [2] develops a reverse time attention model for
EHR data which achieves high accuracy while remaining clinically interpretable.
Its two-level neural attention detects influential past visits and significant clin-
ical variables within those visits (e.g. key diagnoses). Some works try to model
disease progression by taking time intervals into consideration. For example, Sta-
geNet [5] integrates inter-visit time information into LSTM cell states to capture
the stage variation of patients’ health conditions.

Another line of work proposes to incorporate existing medical knowledge into
diagnosis prediction. For example, GRAM [3] infuses information from a med-
ical ontology DAG (Directed acyclic graph) [19] into deep learning models via
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neural attention. GRAM can learn accurate and interpretable representations
for medical concepts and show significant improvement in the prediction perfor-
mance, especially on low-frequency diseases and small datasets. HAP [23] adopts
the same medical ontology DAG with GRAM [3], but hierarchically propagates
attention across the entire ontology structure with two rounds of knowledge
propagation. Nevertheless, in both GRAM and HAP, medical ontology infor-
mation is only used when learning code representations. Hence, Ma et al. [15]
propose KAME which directly exploits medical knowledge in the whole predic-
tion process, i.e. learning code representations, generating visit embeddings and
making predictions. KnowRisk [24] and DG-RNN [22] incorporate a more pow-
erful and larger scale knowledge graph KnowLife [4]3 to enrich the information
extracted from insufficient inputs and guide the prediction. And they propose
sophisticated knowledge graph attention to obtain the latent information from
embeddings of the input events in the knowledge graph.

2.2 Stable Learning

In order to tackle the problem of statistical spurious dependency, researchers
propose a stable learning framework. The framework usually consists of two
steps: learning weights of training samples and training based on weighted data.
To be more specific, sample weights are learned to reduce the correlation be-
tween features that could be measured by HSIC [6] or similar metrics. Under
this framework, a lot of decorrelation methods [18, 10] have been proposed to
train linear stable models using re-weighted samples. Then, various deep stable
models are also proposed. For instance, StableNet [25] proposes to remove depen-
dencies between features by adopting sample weighting based on RFF (Random
Fourier Features). OOD-GNN [12] designs a novel nonlinear graph representation
decorrelation method.

For the diagnosis prediction task, Luo et al. [13] propose to use a causal rep-
resentation learning method called Causal Healthcare Embedding (CHE) which
aims at eliminating the spurious statistical relationship by removing the depen-
dencies between diagnoses and procedures. In comparison, we propose MulDiag
to eliminate spurious dependencies between different disease causes.

3 Preliminary

In this section, we mainly provide some background knowledge about EHR data
and formulate the diagnosis prediction task.

3.1 Electronic Health Records

Electronic Health Records (EHR) is a special kind of data that consists of the
medical history of a patient. For each visit to the hospital of a specific patient,
3 http://knowlife.mpi-inf.mpg.de/
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the diagnoses are recorded as medical codes in a pre-defined system such as ICD4

(International Classification of Diseases) or CUI 5 (Concept Unique Identifiers).

3.2 Basic Notations

In this paper, all the unique medical codes from EHR data are denoted as
c1, c2, . . . , c|C| ∈ C. For a specific patient, the EHR data are denoted as V =
{v1, v2, . . . , vt}. Visit vt is a subset of C, representing medical codes appearing
in the t-th visit. For the convenience of calculation, vt can also be represented as
a |C|-length multi-hot vector xt ∈ {0, 1}|C|, where each element is zero or one,
representing each medical code appears or not respectively. By stacking those
multi-hot vectors, we reach a 0-1 valued matrix X ∈ {0, 1}t×|C| to represent the
EHR data.

3.3 Diagnosis Prediction Task

Diagnosis prediction is one of the most important tasks in the health care area
which aims to predict potential diagnoses according to historical EHR data. Here,
we give the formulation based on the notations provided above. For a specific
patient, denote his or her EHR data for t consecutive visits as X ∈ {0, 1}t×|C|,
the goal is to tell which diagnosis is likely to appear in the next visit, i.e. the
value of xt+1.

4 Methodology

In Figure 2, we provide an overview of the proposed MulDiag. In the following,
we will describe each sub-module and optimization in detail.

4.1 Multi-Cause Network

In MulDiag, we employ a parameter embedding matrix E ∈ R|C|×d, where each
row encodes a medical code. Given t-th visit code xt, we can obtain the vector
representation for t-th visit as follows:

vt = Ext. (1)

Inspired by deep multi-interest recommendation models [11, 1], we devise a
Multi-Cause Network to generate multiple representations to reflect the disease
causes of patients. In previous studies, the attention mechanism has shown strong
capability in exploiting temporal EHR visit data. Hence, in this work, we adopt
a similar temporal attention mechanism. First, visit embeddings v1,v2, . . . ,vt

are fed into an RNN to encode historical visits information into state vectors:

g1,g2, . . . ,gt = RNN(v1,v2, . . . ,vt). (2)
4 https://www.cdc.gov/nchs/icd/icd9.htm
5 https://www.nlm.nih.gov/research/umls/new_users/online_learning/Meta_005
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Fig. 2: The overview of the proposed MulDiag. The Embedding Layer first con-
verts visits consisting of medical codes into dense embeddings. Then, Multi-
Cause Network extracts multiple cause vectors given visit embeddings. Empirical
HSIC statistics is calculated between each pair of cause representations and are
optimized through sample weighting. Weighted BCE loss is adopted to optimize
model parameters.

Then, based on these state vectors, attention coefficients are given by

α1, α2, . . . αt = softmax(a1, a2, . . . , at), (3)

in which αi = wT
a gi + b. Finally, we can obtain cause vector representations as

follows:

c =

t∑
i=1

αivi. (4)

We adopt the multi-head attention mechanism (for the sake of brevity, we omit
the subscript in the previous text), so there are multiple cause vectors, i.e.
c1, c2, . . . , cm.

4.2 Cause Decorrelation

To decorrelate cause representations, we first need to measure the degree of
dependence between each pair of cause representation vectors. Cause represen-
tations c1, c2, . . . , cm are samples of a high-dimensional distribution. In this
paper, we introduce HSIC to reflect dependence among each pair of cause rep-
resentations. HSIC is the Hilbert-Schmidt norm of the cross-covariance operator
between distributions in Reproducing Kernel Hilbert Space (RKHS). Let x,y be
random vector variables, and they follow distribution pxy, HSIC is given by

HSIC (pXY,x,y) =Ex1,x2,y1,y2
[k (x1,x2) l (y1,y2)] + Ex1,x2

[k (x1,x2)]

· Ey1,y2
[l (y1,y2)]− 2Ex1,y1

[Ex2
[k (x1,x2)] Ey2

[l (y1,y2)]] ,
(5)

in which k(·, ·) and l(·, ·) are kernel functions.



Multi-Cause Learning for Diagnosis Prediction 7

However, the definition of HSIC in Equation 5 is only theoretically valuable.
Luckily, given a series of n independent samples Z := {(x1,y1) , . . . , (xn,yn)} ⊂
X × Y drawn from pxy, there is an approximately unbiased empirical statistics
[6]:

HSIC(Z) = (n− 1)−2 trKHLH, (6)
where H,K,L ∈ Rn×n,Kij = k (xi,xj) , Lij = l (yi,yj) and Hij = δij −n−1. In
this paper, we adopt the Radial Basis Function (RBF) kernel functions, i.e.

k(x1,x2) = l(x1,x2) = exp

(
−‖x1 − x2‖22

σ2
.

)
(7)

Algorithm 1: Training of MulDiag
Input: Training dataset
Parameters: Θ,w

1 Initialize sample weights w← 1
2 Randomly initialize model parameters Θ
3 for q ← 1 to max_epoch do
4 Keep w(q−1) fixed and update parameters Θ(q) according to Equation 10
5 Keep Θ(q) fixed and update sample weights w(q) according to Equation 12
6 if early stopping condition reaches then
7 return fΘ(q)

8 end
9 end

Inspired by sample re-weighting techniques, we propose a cause decorrelation
framework that aims to estimate a weight for each sample. In this manner,
cause representations for re-weighted data are decorrelated. We denote w ∈
Rn as the sample weights, where n is the number of samples. Before training,
w is initialized as [1, 1, . . . , 1]. During training, sample weights w and model
parameters are alternatively optimized as shown in Algorithm 1.

Model Optimization. During the optimization of model parameters, sample
weights w is fixed. Given the k-th training sample Xk = (x1,x2, . . . ,xt,xt+1),
for target medical code i, cause selection is conducted by choosing a cause rep-
resentation that is closest to the embedding vector Ei:

ŝi = max cTj Ei. (8)

The normalized prediction score for i-th medical code will be si = exp(ŝi)∑
j exp(ŝj)

.
Hence, the BCE (Binary Cross Entropy) loss function for the k-th training sam-
ple would be

L(Xk) = −
|C|∑
i=1

si log(xt+1[i]) + (1− si) log(1− xt+1[i]). (9)
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Model parameters Θ is updated through the weighted BCE loss:

Θ← argmin
∑
k

wkL(Xk) (10)

Weight Optimization. To obtain decorrelated cause representations, Mul-
Diag finds optimal sample weights by minimizing the empirical HSIC statistics
between each pair of weighted cause vectors. Formally, given a batch of B sam-
ples, let c

(b)
i be the i-th cause vector of the b-th sample and w(b) be the sample

weight for the b-th sample, Then, the HSIC loss would be

HSIC loss =
∑
i

∑
j

HSIC({(w(1)c
(1)
i ,w(1)c

(1)
j ), . . . , (w(B)c

(B)
i ,w(B)c

(B)
j )}),

(11)
where HSIC is defined in Equation 6. With model parameters Θ fixed, sample
weights w is updated as:

w← argmin
w

HSIC loss. (12)

4.3 Complexity Analysis and Model Comparison

In this subsection, we analyze the complexity of MulDiag and compare it with
mainstream diagnosis prediction models.

For MulDiag, it takes O(nmdLK) to obtain m cause vectors for n samples,
in which d is embedding size, L is the average length of visit data and K is the
average number of diagnoses appearing in one visit. Cause decorrelation process
takes O(Bnd) to compute the HSIC statistics in which B is the batchsize.

For mainstream diagnosis prediction models such as RETAIN and StageNet,
computation complexity is usually O(ndLK). Therefore, MulDiag is as asymp-
totically efficient as mainstream diagnosis prediction methods.

5 Experiments

In this section, we first provide details of experimental settings. Then, we discuss
the experimental results of MulDiag and compare them with baseline methods.
In addition, we also provide visualization and sensitivity analysis.

5.1 Experimental Setup

Dataset In this paper, we conduct extensive experiments on a real-world EHR
dataset MIMIC-III which includes 7,537 patients’ health records from ICU. In
the training phase, part of historical diagnoses are employed as an input of our
model while future diagnoses serve as supervision signals. Similarly, in the test
phase, diagnoses appearing later than those in the training set are adopted to
compute the accuracy and precision of our model.
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Baselines To validate the effectiveness of the proposed MulDiag, we choose
four competitive baseline models: LSTM, RETAIN [2], RAIM [21], StageNet[5].

LSTM: We adopt the same embedding method as Dipole [14]. Then, the
embeddings of each visit are fed into an LSTM [8] layer. After that, all hidden
states are added together to obtain a final feature vector. In the end, a linear
classifier is employed to reach final predictions.

RETAIN: RETAIN is a competitive prediction model that adopts a two-level
neural attention model that detects influential past visits and significant clinical
variables with those visits.

RAIM: RAIM introduces an efficient attention mechanism for continuous
monitoring data, which is guided by discrete clinical events. With guided multi-
channel attention, high-density multi-channel signals are integrated with discrete
events and prove very useful in risk prediction.

StageNet: StageNet is constituted of a stage-aware long-short-term memory
(LSTM) module extracting health stage variations with no supervision and a
stage-adaptive convolutional module that incorporates stage-related progression
patterns.

Evaluation Metric Following previous works [3, 15], we adopt two metrics
to measure the performance of all methods for the diagnosis prediction task,
i.e. visit-level precision@k and code-level accuracy@k. In addition, we sort the
medical codes by their frequencies in the training dataset in non-decreasing
order, and then divide them into five different groups. We report code-level
accuracy in each group to reflect the prediction performance for codes with
varying frequencies.

Implementation Details In this paper, all the baselines and our models are
implemented with PyTorch 6 [16]. The dataset is randomly divided into training,
validation and testing sets in a 0.7:0.1:0.2 ratio. Embedding size d is set to 64
for all approaches. The same dropout strategy with a 0.5 drop rate is applied
to all the methods. All methods are trained with Adam optimizer [9] with a
mini-batch of 128 samples. The learning rate is fixed at 0.001 for all methods.

5.2 Performance Comparison

Comparison results at both visit and code levels are reported in Table 1, in which,
precision and accuracy for different values of k are included. From the table, we
can observe that MulDiag outperforms all the baseline methods. In Table 2,
in addition to the overall performance in code-level accuracy, we also report the
results for each group which are obtained by dividing the medical codes according
to the percentile of their frequencies in the training dataset. For example, 0-20
are the rarest diagnoses while 80-100 represent the most common ones. From
the table, we can tell that in addition to the overall performance improvement,
6 https://pytorch.org/
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Table 1: Visit Level Precision@k and Code Level Accuray@k comparison on
MIMIC-III. Average results for multiple values of k are also included.

Model Visit Level Precision@k Code Level Accuracy@k
10 15 20 25 30 Avg 10 15 20 25 30 Avg

LSTM 34.49 34.10 36.23 38.84 41.57 37.05 22.40 27.98 32.29 35.77 38.80 31.45
RETAIN 39.22 38.36 40.06 42.72 45.51 41.17 25.48 31.44 35.86 39.53 42.55 34.97
RAIM 23.49 23.50 25.31 28.17 30.75 26.24 15.93 20.27 24.15 27.61 30.55 23.70
StageNet 36.69 36.57 38.95 41.89 44.85 39.79 23.82 29.85 34.69 38.48 41.77 33.72

MulDiag 39.16 38.77 40.93 43.71 46.47 41.81 25.49 31.73 36.55 40.27 43.40 35.49

Table 2: Code-level accuracy@20. Diagnosis codes are divided into five groups
according to their frequencies in the training set. For example, 0-20 are the rarest
diagnoses.

Model Code-Level Accuracy
0-20 20-40 40-60 60-80 80-100 Overall

LSTM 2.49 12.10 19.08 47.07 81.31 32.29
RETAIN 3.02 17.17 25.64 51.31 82.38 35.86
RAIM 0.00 0.00 0.00 26.56 96.87 24.15
StageNet 3.51 16.39 23.85 47.75 82.43 34.69

MulDiag 5.80 20.53 28.26 49.16 79.18 36.55

MulDiag achieves significant improvement in the prediction of rare diagnoses. In
comparison, baseline models perform poorly for those infrequent diagnoses.

5.3 Visualization Analysis

For an easier understanding of weight optimization, we visualize the change
of HSIC on the test set while MulDiag and MulDiag-NWO are training on the
MIMIC-III dataset. Compared with MulDiag, MulDiag-NWO is almost the same
except that there is no sample weight optimization (i.e. each sample weight is
1). Since the parameters of models are initialized randomly, HSIC is near 0 at
earlier epochs for both MulDiag and MulDiag-NWO. Then, the HSIC begins to
decrease. After some epochs, the HSIC of MulDiag-NWO on the test set remains
unchanged while the HSIC of MulDiag keeps decreasing. This makes it possible
for our MulDiag to update more steps and achieve better performance.

5.4 Sensitivity Analysis

We also provide the experimental results for the sensitivity analysis of the num-
ber of causes. As Figure 4 illustrates, the number of causes does not impact the
performance very much. Cause decorrelation of MulDiag is capable of boosting
the performance for various values of the number of causes.
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Fig. 3: The change of HSIC on the test set when MulDiag and MulDiag-NWO
are trained on MIMIC-III.
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Fig. 4: Accuracy and precision of MulDiag with the number of causes varying
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6 Conclusion

In this paper, we propose MulDiag which aims to capture multiple causes of
diseases. To avoid learning statistical spurious dependency between cause rep-
resentations and diagnosis predictions, we first introduce HSIC to measure the
degree of independence among cause vectors. Then, re-weighting techniques are
adopted to implement dependency decorrelation. Extensive experiments on the
publicly available benchmark dataset demonstrate the effectiveness of our model.
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